On the capabilities of multilayer perceptrons

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Langevin Updating in Multilayer Perceptrons

The Langevin updating rule, in which noise is added to the weights during learning, is presented and shown to improve learning on problems with initially ill-conditioned Hessians. This is particularly important for multilayer perceptrons with many hidden layers, that often have ill-conditioned Hessians. In addition, Manhattan updating is shown to have a similar eeect.

متن کامل

Fast training of multilayer perceptrons

Training a multilayer perceptron by an error backpropagation algorithm is slow and uncertain. This paper describes a new approach which is much faster and certain than error backpropagation. The proposed approach is based on combined iterative and direct solution methods. In this approach, we use an inverse transformation for linearization of nonlinear output activation functions, direct soluti...

متن کامل

Alternate Learning Algorithm on Multilayer Perceptrons

Multilayer perceptrons have been applied successfully to solve some difficult and diverse problems with the backpropagation learning algorithm. However, the algorithm is known to have slow and false convergence aroused from flat surface and local minima on the cost function. Many algorithms announced so far to accelerate convergence speed and avoid local minima appear to pay some trade-off for ...

متن کامل

Multilayer Perceptrons based on Fuzzy Flip- Flops

The concept of fuzzy flip-flop was introduced in the middle of 1980’s by Hirota (with his students). The Hirota Lab recognized the essential importance of the concept of a fuzzy extension of a sequential circuit and the notion of fuzzy memory. From this point of view they proposed alternatives for “fuzzifying” digital flip-flops. The starting elementary digital units were the binary J-K flipflo...

متن کامل

Quantile regression with multilayer perceptrons

We consider nonlinear quantile regression involving multilayer perceptrons (MLP). In this paper we investigate the asymptotic behavior of quantile regression in a general framework. First by allowing possibly non-identifiable regression models like MLP's with redundant hidden units, then by relaxing the conditions on the density of the noise. In this paper, we present an universal bound for the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Complexity

سال: 1988

ISSN: 0885-064X

DOI: 10.1016/0885-064x(88)90020-9